Displaying items by tag: LithiumNumberland engineering consultancy for new processes, new materials. New processes: We analyse, optimize and document processes often not covered by quality management handbooks and teach them to run. We translate technical demands into physical effects or properties and then find the suitable material.http://six-sigma-black-belt.eu/index.php/get-in-contact/itemlist/tag/Lithium2016-07-28T13:41:35+02:00Joomla! - Open Source Content ManagementTowards a Li-air battery2015-10-27T22:11:36+01:002015-10-27T22:11:36+01:00http://six-sigma-black-belt.eu/index.php/get-in-contact/item/1510-towards-a-li-air-batteryAdministratorgrond@numberland.de<div class="K2FeedImage"><img src="http://six-sigma-black-belt.eu/media/k2/items/cache/beec34d40193eff7741858c03eafd095_S.jpg" alt="Towards a Li-air battery" /></div><div class="K2FeedIntroText"><h1><span style="display: inline; float: none; position: static; font-size: 14px; font-weight: bold; font-family: Tahoma,Arial,sans-serif; font-size-adjust: none; font-style: normal; font-variant: normal; line-height: 14.3px; text-align: left; text-decoration: none; text-indent: 0px; text-shadow: none; text-transform: none; word-spacing: normal;">Towards a Li-air battery</span></h1> </div><div class="K2FeedFullText"> <p>ID: F1510-06</p> <p>A Li metal anode as an alternative of graphite and the use of oxygen (O2) from the atmosphere as a cathode guarantees up to 10 times greater energy thickness. However, O2 decrease following response with Li-ions leads to deposition of a solid item within cathode porosities and to cathode clogging. Scientists addressed this problem with a radical approach perhaps not yet tried. Traditional metal-air batteries, as well as fuel cells, rely on three-phase contact points inside the cathode. The connections guarantee electron transport, hydrogen transportation and O2 influx. Nevertheless, in the situation of Li-air, this operating configuration changes the porosity and hydrophobicity of the cathode because of the development of the reduction products at the three-phase contact points. In groundbreaking studies, the group investigated a two-phase contact-point electrode setup (a flooded setup). The electrolyte or charge carrier is also used as the O2 carrier to harvest O2 from ambient air through an outside O2 harvesting device. The idea employs environmentally benign ionic liquid electrolytes and nano-structured electrodes that harvest dry O2 from the atmosphere. Experts ready and tested anode and cathode materials, developed the O2 harvesting concept, and prepared and integrated into the electrode systems numerous ionic liquids as well as solid polymer electrolytes. Fundamental studies provided physicochemical parameters for the model of a complete Li-air battery pack. Although the useful execution of Li-air batteries is not anticipated for another ten years or two, LABOHR has made a major share to the development work. Studies confirmed the value of utilizing ionic liquid-based electrolyte solutions to deal with solvent reactivity and volatility issues, and highlighted the issues of operating the Li-air battery in three-phase configuration. The idea of soluble redox ‘shuttle’ also opened a new possible course toward useful Li/O2 battery. In the meantime, the studies of electrolytes and electrode materials are most likely to discover short-term application in the Li-ion battery field.</p> <p><a href="mailto:getincontact@numberland.com?subject=Get%20in%20Contact">getincontact@numberland.com</a></p> <p>&nbsp;</p></div><div class="K2FeedTags"><ul><li>Energy</li><li>Storage</li><li>Air</li><li>Lithium</li><li>Battery</li><ul></div><div class="K2FeedImage"><img src="http://six-sigma-black-belt.eu/media/k2/items/cache/beec34d40193eff7741858c03eafd095_S.jpg" alt="Towards a Li-air battery" /></div><div class="K2FeedIntroText"><h1><span style="display: inline; float: none; position: static; font-size: 14px; font-weight: bold; font-family: Tahoma,Arial,sans-serif; font-size-adjust: none; font-style: normal; font-variant: normal; line-height: 14.3px; text-align: left; text-decoration: none; text-indent: 0px; text-shadow: none; text-transform: none; word-spacing: normal;">Towards a Li-air battery</span></h1> </div><div class="K2FeedFullText"> <p>ID: F1510-06</p> <p>A Li metal anode as an alternative of graphite and the use of oxygen (O2) from the atmosphere as a cathode guarantees up to 10 times greater energy thickness. However, O2 decrease following response with Li-ions leads to deposition of a solid item within cathode porosities and to cathode clogging. Scientists addressed this problem with a radical approach perhaps not yet tried. Traditional metal-air batteries, as well as fuel cells, rely on three-phase contact points inside the cathode. The connections guarantee electron transport, hydrogen transportation and O2 influx. Nevertheless, in the situation of Li-air, this operating configuration changes the porosity and hydrophobicity of the cathode because of the development of the reduction products at the three-phase contact points. In groundbreaking studies, the group investigated a two-phase contact-point electrode setup (a flooded setup). The electrolyte or charge carrier is also used as the O2 carrier to harvest O2 from ambient air through an outside O2 harvesting device. The idea employs environmentally benign ionic liquid electrolytes and nano-structured electrodes that harvest dry O2 from the atmosphere. Experts ready and tested anode and cathode materials, developed the O2 harvesting concept, and prepared and integrated into the electrode systems numerous ionic liquids as well as solid polymer electrolytes. Fundamental studies provided physicochemical parameters for the model of a complete Li-air battery pack. Although the useful execution of Li-air batteries is not anticipated for another ten years or two, LABOHR has made a major share to the development work. Studies confirmed the value of utilizing ionic liquid-based electrolyte solutions to deal with solvent reactivity and volatility issues, and highlighted the issues of operating the Li-air battery in three-phase configuration. The idea of soluble redox ‘shuttle’ also opened a new possible course toward useful Li/O2 battery. In the meantime, the studies of electrolytes and electrode materials are most likely to discover short-term application in the Li-ion battery field.</p> <p><a href="mailto:getincontact@numberland.com?subject=Get%20in%20Contact">getincontact@numberland.com</a></p> <p>&nbsp;</p></div><div class="K2FeedTags"><ul><li>Energy</li><li>Storage</li><li>Air</li><li>Lithium</li><li>Battery</li><ul></div>